Match List $-I$ with List $-II$
List $-I$ | List $-II$ | ||
$A$. | Coefficient of Viscosity | $I$. | $[M L^2T^{–2}]$ |
$B$. | Surface Tension | $II$. | $[M L^2T^{–1}]$ |
$C$. | Angular momentum | $III$. | $[M L^{-1}T^{–1}]$ |
$D$. | Rotational Kimeatic energy | $IV$. | $[M L^0T^{–2}]$ |
$ A-II, B-I, C-IV, D-III$
$ A-I, B-II, C-III, D-IV$
$ A-III, B-IV, C-II, D-I$
$A-IV, B-III, C-II, D-I$
If $C$ and $R$ represent capacitance and resistance respectively, then the dimensions of $RC$ are
The dimensions of shear modulus are
Inductance $L$ can be dimensionally represented as
Young's modulus of elasticity $Y$ is expressed in terms of three derived quantities, namely, the gravitational constant $G$, Planck's constant $h$ and the speed of light $c$, as $Y=c^\alpha h^\beta G^\gamma$. Which of the following is the correct option?
The dimension of $P = \frac{{{B^2}{l^2}}}{m}$ is
where $B=$ magnetic field, $l=$ length, $m =$ mass